Koleksi Pustaka
Model Deteksi Sleep Apnea Dari Sinyal Pernapasan Berbasis Deep Learning

Sleep apnea merupakan gangguan pernapasan yang terjadi selama tidur dan dapat berdampak serius pada kesehatan apabila tidak terdeteksi sejak dini. Penelitian ini bertujuan untuk merancang, mengembangkan, dan menguji model deteksi Obstructive Sleep Apnea (OSA) dengan memanfaatkan sinyal fisiologis pernapasan menggunakan pendekatan deep learning. Dataset yang digunakan berasal dari PhysioNet dan IMERI UI, mencakup sinyal seperti saturasi oksigen darah (SpO₂), aliran udara (flow), gerakan dada (thorax), dan abdomen. Data diolah menjadi segmen berdurasi 30 detik, kemudian dinormalisasi dan diubah ke domain frekuensi menggunakan Fast Fourier Transform (FFT), serta digunakan sebagai input untuk model. Arsitektur model yang dikembangkan meliputi Convolutional Neural Network (CNN) 1D dan Long Short-Term Memory (LSTM). Berdasarkan hasil evaluasi, model CNN dengan preprocessing normalisasi memberikan performa terbaik dengan akurasi mencapai 98,7%, menunjukkan kemampuan luar biasa dalam mengekstraksi fitur spasial dari sinyal pernapasan mentah. Sementara itu, model LSTM dengan data normalisasi menunjukkan akurasi 91,1%, yang juga cukup tinggi, namun masih di bawah performa CNN. Ketika preprocessing FFT diterapkan, performa menurun pada kedua model: CNN-FFT mencatat akurasi 91,3%, sedangkan LSTM-FFT hanya mencapai akurasi 89,5%. Temuan ini menunjukkan bahwa CNN lebih unggul dalam mengekstraksi pola spasial langsung dari data sinyal mentah tanpa perlu transformasi ke domain frekuensi. Sebaliknya, LSTM yang dirancang untuk menangkap informasi temporal dari urutan data, cenderung kehilangan performa ketika data diubah ke domain frekuensi karena informasi waktu menjadi kurang eksplisit. Hasil pengujian menunjukkan model terbaik adalah CNN-FFT, model kemudian diintegrasikan ke dalam prototipe sistem berbasis web untuk mendeteksi OSA secara otomatis. Penelitian ini diharapkan dapat berkontribusi dalam pengembangan sistem deteksi apnea tidur yang non-invasif, cepat, akurat, dan mudah diakses, guna mendukung proses skrining dini oleh tenaga medis maupun masyarakat umum.

Daftar File
  • Halaman Identitas Skripsi
    Halaman Pengesahan.pdf
  • Kata Kunci
    Sleep apnea, sinyal pernapasan, CNN, LSTM, FFT, pembelajaran mendalam, PhysioNet